- 2. V. N. Belov, Current Topics in Organic Chemistry (K. A. Ogloblin, editor) [in Russian], Leningrad State University Press (Izd. LGU) (1986), No. 8, p. 4.
- 3. D. J. Anderson, T. L. Gilchrist, G. E. Gymer, and C. W. Rees, J. Chem. Soc., Perkin 1, No. 6, 550 (1973).
- 4. S. Szántay and L. Novak, Synthesis of Prostaglandins, Akadémiai Kiadó (1974), p. 166.
- 5. M. A. Kuznetsov and V. N. Belov, Zh. Org. Khim., 20, 1768 (1984).
- 6. G. V. Shustov, S. N. Denisenko, I. I. Chervin, N. L. Asfandiarov, and R. G. Kostyanovsky, Tetrahedron, <u>41</u>, 5719 (1985).
- 7. C. N. R. Rao, P. K. Basu, and M. S. Hedge, Appl. Spectrosc. Rev., 15, 1 (1979).
- 8. W. K. Franke and H. Neunhoeffer, Methoden der Organischen Chemie (E. Müller, ed.) Georg Thieme Verlag, Stuttgart (1972), Bd. B/1d., S. 692.
- 9. N. S. Zefirov, I. V. Kazimirchuk, and K. A. Lukin, Cycloaddition of Carbenes to Olefins [in Russian], Nauka, Mosow (1985), p. 134.
- 10. K. Eichinger, Monatsh. Chem., <u>106</u>, 1213 (1975).
- 11. K. Sonogashira, Y. Tohda, and N. Hagihara, Tetr. Lett., No. 50, 4467 (1975).
- 12. H. D. Drew and H. H. Hatt, J. Chem. Soc., No. 1, 16 (1937).
- L. Fieser and M. Fieser, Reagents for Organic Synthesis [Russian translation], Mir, Moscow (1970), Vol. 3, p. 208.

SATURATED NITROGEN HETEROCYCLES.

11.* CATALYTIC SYNTHESIS OF 2-PYRROLIDYLALKANOLS

UDC 547.741'722:542.97

I. N. Klochkova, N. N. Sorokin, and M. V. Noritsina

Furylakylamines have been catalytically converted into novel isomers of 2-pyrrolidylalkanols bearing a secondary alcohol group in the aliphatic chain, or a tertbutyl group attached to the heterocycle.

Continuing studies of the conversion of furylakylamines into pyrrolidylalkanols by hydrogenation in acid media in the presence of ruthenium-promoted nickel [1], preparative methods have been developed for obtaining secondary pyrrolidylalkanols and primary alcohols containing the bulky tert-butyl radical in the 5-position of the pyrrolidine ring.

I, VI $R^1 = R^2 = H$, $R^3 = CH_3$; II, VII $R^1 = R^3 = CH_3$, $R^2 = H$; III, VIII (trans), IX (cis) $R^1 = H$, $R^2 = R^3 = CH_3$; IV, X (trans), XI (cis) $R^1 = R^2 = R^3 = CH_3$; V, XII (trans), XIII (cis) $R^1 = R^3 = H$; $R^2 = t \cdot C_4 H_9$

Alcohols (VI-XIII) were obtained in acidic solution (pH 4) in the presence of skeletal nickel containing 1% of ruthenium, with an initial hydrogen pressure of 50-60 atm [2].

The presence of a methyl group in the 5-position of the furan ring reduces the rate of the reaction, so that the hydrogenation of amines (I-IV) was carried out at 70-80°C, i.e., 10-20°C higher than the other amines [1].

In the case of starting compounds (III-V), which contain an alkyl substituent in the 3-position of the side chain, both the cis- and trans-isomers are obtained, in accordance

*For Communication 10, see [1].

N. G. Chernyshevskii State University, Saratov 410601, and the N. I. Vasilov Agricultural Institute, Saratov 410600. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1058-1061, August, 1988. Original article submitted September 4, 1986; revision submitted December 14, 1987.

with previously obtained information on the catalyzed hydrogenation of furylalkylamines [1]. With amines (III) and (IV), the hydrogenate contained predominantly the cis-pyrrolidinols, according to GC. The hydrogenation of (V) resulted in the preferential formation of the trans-isomer (XII) (53-55%), apparently as a result of the presence of the bulky tert-butyl substituent adjacent to the nitrogen atom involved in cyclization [3].

The use of ruthenium-promoted nickel enabled the yield of 4-(5-methyl-2-pyrrolidyl)butan-2-ol to be increased from 12% [3] to 50% (overall yield cis- and trans- isomers). As in the method employed in [3], in the present case small amounts (up to 8%) of the corresponding aminodiol were formed.

N-Methylpyrrolidylalkanols (VII), (X), and (XI) were obtained by hydrogenating the appropriate N-methylfurylamines, or by direct synthesis by methylating the nitrogen-unsubstituted pyrrolidylalkanols with formaldehyde in the presence of formic acid. Alcohols (XIV) and (XV) were obtained by methylating (XII) and (XIII), respectively.

The structures of the alcohols (VI-XV) were established by their conversion into the acetyl derivatives (XVI-XXV).

XIV, XIX, XXIV (trans), XV, XX, XXV (cis) $R^2=t-C_4H_9$, $R^3=H$; XVI, XXI $R^2=H$, $R^3=CH_3$; XVII, XXII (trans), XVIII, XIII (cis) $R^2=R^3=CH_3$

The pure isomers (VIII-XI) were isolated from the hydrogenate by vacuum fractionation, with a chromatographic purity of 96-99%.

In the case of (5-tert-butyl-2-pyrrolidyl)propanols (XII) and (XIII), fractionation gave a mixture enriched in the cis- or trans- forms. The trans-isomers always contained as impurity the difficultly separable tetrahydrofurylamines. The pure compounds were obtained by fractional crystallization of the tartrates as described in [4], from fractions enriched in the trans-isomer. Configurational assignment of the isomers was made by comparison of their physicochemical properties (Tablesl and 2) and spectral characteristics with those of known stereoisomers, using previously established criteria [1, 5]. The cis-pyrrolidine alcohols (IX, XI, XIII, XV) have higher boiling points and refractive indices, and longer retention times on various sorbents used in GC than the trans-compounds (VIII, X, XII, XIV).

In the IR spectra of alcohols (VI-XV), strong absorption is seen at 3600-3200 cm⁻¹ with maxima at 3320-3400 cm⁻¹, together with other bands (1310, 1260, 1075, and 950 cm⁻¹) characteristic of hydroxyl group vibrations. In the spectra of (VII), (X), (XI), (XIV), and (XV), narrow absorption is seen at 2790-2780 cm⁻¹ ($\nu_{CH_3N<}$). The presence of the tert-butyl radical in (XII-XIV), (XIX-XX), and (XXIV-XXVI) is shown by a doublet at 1395-1365 cm⁻¹ (δ_{CH_3}) with an intensity ratio of 1:2. In the case of compounds (XXI-XXV), strong absorption is present at 1740-1720 cm⁻¹ and 1250-1235 cm⁻¹ (ester $\nu_{C=0}$), and in the N-acylacetates (XVI-XX), in addition to ester group absorption, strong absorption is present at 1680-1640 cm⁻¹ (tertiary amide $\nu_{C=0}$).

One of the most characteristic signals in the ¹³C NMR spectrum of the 2-pyrrolidylalkanols is that for the CH_2OH carbon atom, the chemical shift of which is highly dependent on the steric structure of the molecule [1]. In the spectra of the secondary alcohols (VI-XI), the signal for the carbon atom bound to the hydroxyl group is shifted to lower field by 4-6 ppm by the α -effect, as compared with the similar carbon atoms in primary alcohols. A similar difference in chemical shifts persists in the acetyl derivatives (XVI),(XVII), and (XXI-XXIII).

The splitting of the signals in the ¹³C NMR spectra of the alcohols (VI-XI) shows that the latter exist in the erythro- and threo- forms, which we were unable to separate in consequence of the closeness of their physical properties.

Com-	bp, °C	₩ 20	Found, %			Empirical	Calculated, %			Yield,
pound	(pressure, hPa)	"D"	с	н	N	formula	с	н	N	%
VI	105 106 (5,3) [30 32]		67,0	11,9	9,9	C ₈ H ₁₇ NO	67,1	11,9	9,8	35
VII VIII IX	$84 \dots 85$ (6,6) $96 \dots 97$ (8) $115 \dots 116$ (9,3) $[43 \qquad 44]*$	1,4624 1,4555 1,4648**	68,9 68,7 68,6	12,0 12,2 12,0	8,8 8,8 8,7	C9H19NO C9H19NO C9H19NO C9H19NO	68,8 68,8 68,8	12,1 12,1 12,1	8,9 8,9 8,9	42 25 35
X XI XII XIII XIV XV XVI XVII XVII	9697 ($5,3$) 100101 ($5,3$) 9596 (13) 115116 (13) 114115 (13) 8889 (7) 158159 ($5,3$) 170171 (4) 169 (160 (60)	1,4502 1,4585 1,4570 1,4682 1,4532 1,4635 1,4716 1,4670	70,3 70,2 71,3 71,3 72,1 72,0 63,4 64,6	12,3 12,3 12,4 12,1 12,3 12,2 9,2 9,7	8,3 8,1 7,9 7,8 7,2 7,2 6,2 5,8	C ₁₀ H ₂₁ NO C ₁₀ H ₂₁ NO C ₁₁ H ₂₃ NO C ₁₁ H ₂₃ NO C ₁₂ H ₂₅ NO C ₁₂ H ₂₅ NO C ₁₂ H ₂₅ NO C ₁₂ H ₂₅ NO C ₁₂ H ₂₁ NO ₃ C ₁₃ H ₂₃ NO ₃	70,2 70,2 71,4 71,4 72,4 63,4 63,4	12,3 12,3 12,4 12,4 12,6 12,6 9,3 9,5	8,2 7,6 7,6 7,0 6,2 5,8	28 37 38 23 70 13 82 86
XVIII XIX XXI XXII XXIII XXIII XXIV XXV	$\begin{array}{c} 168 \dots 169 \ (2,6) \\ 155 \ (13) \\ 159 \ (11) \\ 89 \dots 90 \ (6,6) \\ 115 \dots 116 \ (12) \\ 112 \dots 113 \ (6,6) \\ 129 \dots 130 \ (21) \\ 134 \dots 135 \ (21) \end{array}$	$1,4710 \\ 1,4635 \\ 1,4743 \\ 1,4540 \\ 1,4540 \\ 1,4530 \\ 1,4508 \\ 1,4542 $	64,8 66,8 66,5 66,2 67,5 67,7 69,4 69,5	9,4 9,9 10,5 10,8 10,4 11,0 11,0	5,9 5,4 5,6 7,0 6,5 6,6 6,6 5,6	C ₁₃ H ₂₃ NO ₃ C ₁₅ H ₂₇ NO ₃ C ₁₅ H ₂₇ NO ₃ C ₁₁ H ₂₁ NO ₂ C ₁₂ H ₂₃ NO ₂ C ₁₂ H ₂₃ NO ₂ C ₁₄ H ₂₇ NO ₂ C ₁₄ H ₂₇ NO ₂	64,7 66,9 66,3 67,6 67,6 69,7 69,7	9,5 10,0 10,0 10,6 10,8 10,8 11,2 11,2	5,8 5,2 7,0 6,6 5,8 5,8	92 88 76 80 84 79 80 82

TABLE 1. Properties of Compounds Obtained

*According to [6], bp 109-111°C (5 mm), mp 43-45°C. **For the supercooled liquid.

TABLE 2. ¹³C NMR Spectra of Pyrrolidylalkanols

Com-	Chemical shifts, δ , ppm									
pound	C ₍₂₎	C ₍₃₎	C ₍₄₎	C(5)	C ₍₆₎	C ₍₇₎	C ₍₈₎	RI	R ²	R ³
VI	59,42	32,80	25,35	46,09	32,10	37,40	66,85			23,61
VII	58,90 65,86 65,24	32,10 29,81 29.24	21,10	46,01 56,36	31,51 28,96	36,73	66,37 66,86	39,51		23,50 23,02
IX	59,88 59.07	33,12 32,58	33,27 33,22	54,64 54 39	28,62 32,10 30,94	37,18	67,04 66 79	39,01	21,12	23,58
XI	67,85 67,26	29,82 29,30	31,42 31,26	62,73 62,57	26,51 25,77	35,49	66,72 66,31	38,67	19,07	23,97
XIII	58,98	33,29	25,96	68,66	31,40	30,22	62,20		26,52 (CH ₃)	
XV	68,54	29,85	25,85	76,71	31,20	28,69	63,01	44,65	27,12 (CH ₃) 35,25 (C)	-

EXPERIMENTAL

IR spectra were obtained on a UR-20 instrument, for solids as a paste in vaseline oil and hexachlorobutadiene, and for liquids in thin films. ¹³C NMR spectra were recorded on a Varian FT-80A spectrometer (20 MHz) in CDCl₃ in pulse accumulation mode followed by Fourier transmission. GC analyses were carried out on an LKhM-8MD chromatograph with a flame ionization detector, column 1.0 × 0.3 m, sorbent Inzensk brick TMD-TS-M modified with 2% KOH and soaked in 15% Apiezon L, temperature 140-150°C, carried gas (argon) flow rate 1.2 liter/h.

The (2-furyl)alkylamines (I-IV) were obtained as described in [3].

<u>1-(2-Furyl)-4,4-dimethyl-3-aminopentane (V).</u> In a steel rotary autoclave of 610 ml capacity were placed 32 g (0.17 mole) of α-furfurylidenepinacoline, 180 ml of methanol saturated with ammonia at 0°C, and 4 g of skeletal nickel. The initial hydrogen pressure was 100 atm, and the temperature 110-120°C. When uptake of hydrogen had ceased (5 h), a further 2 g of skeletal nickel and 80 ml of methanol saturated with ammonia at 0°C were added, and hydroamination continued for 6 h. The hydrogenate was worked up as described in [3]. Vacuum distillation gave 13 g (39%) of (V), bp 108°C (13.13 hPa), n_D^{20} 1.4750. Found: C 72.7; H 10.4; N 7.9%. $C_{11}H_{19}NO$. Calculated: C 72.9; H 10.5; N 7.7%.

 $\frac{4-(\text{trans-5-Methyl-2-pyrrolidyl})\text{butan-2-ol (VIII) and } 4-(\text{cis-5-Methyl-2-pyrrolidinyl})-\frac{1}{2} \text{butan-2-ol (IX)}. A solution containing 15 g (0.1 mole) of 1-(5-methyl-2-furyl)-3-aminobutane (III), 40 ml of dilute hydrochloric acid (pH 4.0), and 2 g of skeletal nickel/1% Ru was hydrogenated in a steel rotary autoclave of 250 ml capacity at 80°C, initial hydrogen pressure 50 atm. When uptake of hydrogen had ceased (25 atm), the hydrogenate was worked up as described in [2]. Vacuum distillation gave 3.75 g (25%) of (VIII), GC (min) 0.4, 5.25 g (35%) of (IX), GC (min 1.0, and 1.2 g (8%) of aminononane-5,8-diol, bp 146°C (2.7 hPa), n_D^{2°} 1.4804 [3].$

<u>4-(2-Pyrrolidinyl)butan-2-ol (VI), 4-(1-methyl-2-pyrrolidyl)butan-2-ol (VII), 4-(trans-1,5-dimethyl-2-pyrrolidyl)butan-2-ol (X), and 4-(cis-1,5-dimethyl-2-pyrrolidyl)butan-2-ol (XI) were obtained similarly.</u>

<u>3-(trans-5-tert-Butyl-2-pyrrolidyl)propan-1-ol (XIII)</u>. A solution containing 18 g (0.1 mole) of the amine (V), 45 ml of dilute (1:2) hydrochloric acid (pH 4.0), and 2 g of skeletal Ni/1% Ru was hydrogenated in a rotary steel autoclave of 250 ml capacity with an initial hydrogen pressure of 50 atm at 60-70°C. Uptake of hydrogen (27 atm) was complete in 5 h. Vacuum distillation gave 11 g (62%) of a fraction containing 76% of the trans-isomer (XII) and 6.6 g (32%) of a fraction containing 70% the cis-isomer (XIII). To the first mixture was added a solution of 9 g of (+)-tartaric acid in 20 ml of absolute ethanol, and the (XII) tartrate crystallized out as in [4], yield 10 g (65%), mp 121°C. Found: C 53.3; H 8.7; N 4.4%. $C_{11}H_{23}NO \cdot C_4H_6O_6$. Calculated: C 53.7; H 8.6; N 4.1%. Treatment of the tartrate with alkali gave 6.8 g (38%) of the trans-isomer (XIII), GC (min) 0.5, purity 97%. Addition of alkali to the mother liquor gave the cis-isomer (XIII), yield 4.1 g (23%), GC (min) 1.5, purity 95%.

(1-Methyl-2-pyrrolidyl) propan-1-ols (XIV) and (XV) were obtained by methylating (XII) and (XIII), respectively, with formalin and formic acid, as described in [6]. Acetates (XXI-XXV) and N-acylacetates (XVI-XX) were obtained as in [3].

LITERATURE CITED

- 1. M. V. Noritsina, I. N. Klochkova, and N. N. Sorokin, Khim. Geterotsikl. Soedin., No. 12, 1648 (1984).
- I. N. Klochkova, and M. V. Noritsina, Author's Cert. (USSR) No. 1,245,572; Byull. Izobret., No. 27, 66 (1986).
- 3. A. A. Ponomarev, M. V. Noritsina, and A. P. Krivcen'ko, Khim. Geterotsikl. Soedin., No. 6, 923 (1966).
- 4. I. N. Klochkova and M. V. Noritsina, Author's Cert. (USSR) No. 1,139,727; Byull. Izobret., No. 6, 74 (1985).
- 5. I. N. Klochkova, S. A. Lazarev, A. G. Andrianov, Yu. T. Struchkov, G. K. Kravtsova, and M. V. Noritsina, Khim. Geterotsikl. Soedin., No. 2, 222 (1983).
- M. V. Noritsina, I. N. Klochkova, and T. S. Bykovskaya, Khim. Geterotsikl. Soedin., No. 2, 186 (1976).